Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 162: 110138, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36252443

RESUMO

Milk glycoproteins play various biological roles including antibacterial, antiviral activities, modulating immune responses in living organisms. Released N-glycans from milk glycoproteins act as growth substrates for infant-associated bifidobacteria, which are key members of the breastfed infant's gut. To date, the mechanisms, and contributions of glycans to the biological activities of glycoproteins remain to be elucidated. Only by testing both the released glycans and the deglycosylated protein in their native (i.e., non-denatured) form, can the individual contribution to the biological activity of glycoproteins be elucidated. However, for conventional enzymatic and chemical deglycosylation strategies to work efficiently, glycoprotein denaturation is required, which alters the protein native shape, hindering further investigations of its biological roles. An endo-ß-N-acetylglucosaminidase (EndoBI-1) from Bifidobacterium longum subsp. infantis ATCC 15697 (B. infantis) was characterized as having the ability to release N-glycans from bovine milk glycoproteins efficiently, without the denaturation. In this study, the activity of EndoBI-1 was compared to a commercial enzyme to release N-glycans, the peptide-N-glycosidase F (PNGase F), using dairy glycoproteins as the substrate. The kinetic evaluation showed that EndoBI-1 displayed higher activity on native glycoproteins than PNGase F, with 0.036 mg/mL×min and 0.012 mg/mL×min glycan release, respectively. EndoBI-1 released a broader array of glycan structures compared to PNGase F from native glycoproteins. Thirty-two and fifteen distinct compositions were released from the native glycoproteins by EndoBI-1 and PNGase F, respectively, as characterized by advanced mass spectrometry. EndoBI-1 can be considered a promising enzyme for the release of N-glycans and their protein backbone in the native form, which will enable effective glycan release and will facilitate subsequent investigations to reveal their contribution to glycoproteins' biological roles.


Assuntos
Acetilglucosaminidase , Colostro , Humanos , Gravidez , Feminino , Acetilglucosaminidase/análise , Colostro/química , Colostro/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/análise , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/análise , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Polissacarídeos/metabolismo , Glicoproteínas/metabolismo
2.
Foods ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159490

RESUMO

Reverse-phase solid-phase extraction (SPE) is regularly used for separating and purifying food-derived oligosaccharides and peptides prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. However, the diversity in physicochemical properties of peptides may prevent the complete separation of the two types of analytes. Peptides present in the oligosaccharide fraction not only interfere with glycomics analysis but also escape peptidomics analysis. This work evaluated different SPE approaches for improving LC-MS/MS analysis of both oligosaccharides and peptides through testing on peptide standards and a food sample of commercial interest (proteolyzed almond extract). Compared with conventional reverse-phase SPE, mixed-mode SPE (reverse-phase/strong cation exchange) was more effective in retaining small/hydrophilic peptides and capturing them in the high-organic fraction and thus allowed the identification of more oligosaccharides and dipeptides in the proteolyzed almond extract, with satisfactory MS/MS confirmation. Overall, mixed-mode SPE emerged as the ideal method for simultaneously improving the identification of food-derived oligosaccharides and small peptides using LC-MS/MS analysis.

4.
Food Chem X ; 4: 100054, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31650128

RESUMO

Green propolis presents a potential source of bioactive compounds, responsible for its antioxidant capacity. The effects of ethanol concentration, solid-solvent ratio, and extraction time were evaluated in regard to the total phenolic content (TPC) and antioxidant capacity of the extracts by the use of central composite rotatable designs. Optimum extraction conditions lead to significant reduction of extraction time compared to conventional extraction methods. Under optimum conditions, extracts were composed of 1614.80 mg GAE. g-1 and 807 mg artepillin C. g-1. Extracts were effective in retarding the oxidation in oil-in-water emulsions subjected to accelerated tests. Green propolis extracts (up to 200 mg.kg-1) did not increase Saccharomyces cerevisiae cell damage after 4 h of exposure, indicating its antioxidant effect and potential innocuity. Results demonstrated the antioxidant properties of the propolis extract was similar or better than the ones from synthetic antioxidants and warrant further investigation to determine its potential industrial application.

5.
Annu Rev Food Sci Technol ; 9: 503-523, 2018 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29328807

RESUMO

The design of new food products and increased agricultural activities have produced a diversity of waste streams or by-products that contain a high load of organic matter. The underutilization of these streams presents a serious threat to the environment and to the financial viability of the agricultural sector and the food industry. Oleaginous microorganisms, such as yeast and microalgae, have been used to convert the organic matter present in many agricultural waste streams into an oil-rich biomass. Filamentous fungi are promising oleaginous microorganisms because of their high lipid accumulation potential and simple biomass recovery, the latter being related to their pellet-like growth morphology in submerged cultivation. This review highlights the use of oleaginous filamentous fungi to convert food by-products into value-added components, including the effect of cultivation conditions on biomass yield and composition. Special attention is given to downstream processing for the commercial production of fungal oil. Also discussed are innovative techniques to optimize the biomass oil yield and to minimize the challenges associated with biomass harvesting and oil extraction at industrial scale.


Assuntos
Agricultura , Manipulação de Alimentos , Fungos/metabolismo , Microbiologia Industrial , Resíduos Industriais , Biomassa , Fermentação
6.
Biotechnol Prog ; 33(1): 104-112, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27718339

RESUMO

Glycans play important biological roles in cell-to-cell interactions, protection against pathogens, as well as in proper protein folding and stability, and are thus interesting targets for scientists. Although their mechanisms of action have been widely investigated and hypothesized, their biological functions are not well understood due to the lack of deglycosylation methods for large-scale isolation of these compounds. Isolation of glycans in their native state is crucial for the investigation of their biological functions. However, current enzymatic and chemical deglycosylation techniques require harsh pretreatment and reaction conditions (high temperature and use of detergents) that hinder the isolation of native glycan structures. Indeed, the recent isolation of new endoglycosidases that are able to cleave a wider variety of linkages and efficiently hydrolyze native proteins has opened up the opportunity to elucidate the biological roles of a higher variety of glycans in their native state. As an example, our research group recently isolated a novel Endo-ß-N-acetylglucosaminidase from Bifidobacterium longum subsp. infantis ATCC 15697 (EndoBI-1) that cleaves N-N'-diacetyl chitobiose moieties found in the N-linked glycan (N-glycan) core of high mannose, hybrid, and complex N-glycans. This enzyme is also active on native proteins, which enables native glycan isolation, a key advantage when evaluating their biological activities. Efficient, stable, and economically viable enzymatic release of N-glycans requires the selection of appropriate immobilization strategies. In this review, we discuss the state-of-the-art of various immobilization techniques (physical adsorption, covalent binding, aggregation, and entrapment) for glycosidases, as well as their potential substrates and matrices. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:104-112, 2017.


Assuntos
Enzimas Imobilizadas/química , Glicosídeo Hidrolases/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Polissacarídeos/química , Bifidobacterium longum/enzimologia , Glicosídeo Hidrolases/metabolismo , Glicosilação , Manose/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Dobramento de Proteína
7.
Enzyme Microb Technol ; 77: 46-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26138399

RESUMO

EndoBI-1 is a recently isolated endo-ß-N-acetylglucosaminidase, which cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core of high mannose, hybrid and complex N-glycans. These N-glycans have selective prebiotic activity for a key infant gut microbe, Bifidobacterium longum subsp. infantis. The broad specificity of EndoBI-1 suggests the enzyme may be useful for many applications, particularly for deglycosylating milk glycoproteins in dairy processing. To facilitate its commercial use, we determined kinetic parameters for EndoBI-1 on the model substrates ribonuclease B and bovine lactoferrin, as well as on concentrated bovine colostrum whey. Km values ranging from 0.25 to 0.49, 0.43 to 1.00 and 0.90 to 3.18 mg/mL and Vmax values ranging from 3.5×10(-3) to 5.09×10(-3), 4.5×10(-3) to 7.75×10(-3) and 1.9×10(-2)to 5.2×10(-2) mg/mL×min were determined for ribonuclease B, lactoferrin and whey, respectively. In general, EndoBI-1 showed the highest apparent affinity for ribonuclease B, while the maximum reaction rate was the highest for concentrated whey. EndoBI-1-released N-glycans were quantified by a phenol-sulphuric total carbohydrate assay and the resultant N-glycan structures monitored by nano-LC-Chip-Q-TOF MS. The kinetic parameters and structural characterization of glycans released suggest EndoBI-1 can facilitate large-scale release of complex, bioactive glycans from a variety of glycoprotein substrates. Moreover, these results suggest that whey, often considered as a waste product, can be used effectively as a source of prebiotic N-glycans.


Assuntos
Colostro/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Polissacarídeos/metabolismo , Soro do Leite/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/enzimologia , Bifidobacterium/genética , Bovinos , Colostro/química , Feminino , Genes Bacterianos , Glicosilação , Cinética , Lactoferrina/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Polissacarídeos/química , Prebióticos , Gravidez , Ribonucleases/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Soro do Leite/química
8.
Biotechnol Prog ; 31(5): 1323-1330, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101185

RESUMO

Milk glycoproteins are involved in different functions and contribute to different cellular processes, including adhesion and signaling, and shape the development of the infant microbiome. Methods have been developed to study the complexities of milk protein glycosylation and understand the role of N-glycans in protein functionality. Endo-ß-N-acetylglucosaminidase (EndoBI-1) isolated from Bifidobacterium longum subsp. infantis ATCC 15697 is a recently isolated heat-stable enzyme that cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core. The effects of different processing conditions (pH, temperature, reaction time, and enzyme/protein ratio) were evaluated for their ability to change EndoBI-1 activity on bovine colostrum whey glycoproteins using advanced mass spectrometry. This study shows that EndoBI-1 is able to cleave a high diversity of N-glycan structures. Nano-LC-Chip-Q-TOF MS data also revealed that different reaction conditions resulted in different N-glycan compositions released, thus modifying the relative abundance of N-glycan types. In general, more sialylated N-glycans were released at lower temperatures and pH values. These results demonstrated that EndoBI-1 is able to release a wide variety of N-glycans, whose compositions can be selectively manipulated using different processing conditions.


Assuntos
Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Polissacarídeos/química , Animais , Bifidobacterium/enzimologia , Bovinos , Fenômenos Químicos , Colostro , Glicoproteínas/química , Glicosilação , Concentração de Íons de Hidrogênio , Proteínas do Leite/química , Projetos Piloto , Temperatura
9.
Biomed Res Int ; 2015: 146840, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789308

RESUMO

Milk is the most complete food for mammals, as it supplies all the energy and nutrients needed for the proper growth and development of the neonate. Milk is a source of many bioactive components, which not only help meeting the nutritional requirements of the consumers, but also play a relevant role in preventing various disorders. Milk-derived proteins and peptides have the potential to act as coadjuvants in conventional therapies, addressing cardiovascular diseases, metabolic disorders, intestinal health, and chemopreventive properties. In addition to being a source of proteins and peptides, milk contains complex oligosaccharides that possess important functions related to the newborn's development and health. Some of the health benefits attributed to milk oligosaccharides include prebiotic probifidogenic effects, antiadherence of pathogenic bacteria, and immunomodulation. This review focuses on recent findings demonstrating the biological activities of milk peptides, proteins, and oligosaccharides towards the prevention of diseases of the 21st century. Processing challenges hindering large-scale production and commercialization of those bioactive compounds have been also addressed.


Assuntos
Promoção da Saúde/métodos , Proteínas do Leite/metabolismo , Leite/metabolismo , Oligossacarídeos/metabolismo , Animais , Saúde , Humanos , Peptídeos/metabolismo
11.
J Adv Dairy Res ; 1(2): 104, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24818172

RESUMO

Many of milk's functional molecules could not be discovered until the right concordance of novel separation and analytical technologies were developed and applied. Many health-promoting components still await discovery due to technical challenges in their identification, isolation and testing. As new analytical technologies are assembled, new functional milk molecules will be discovered. Bovine milk is a source of a wide array of known bioactive compounds from a variety of molecular classes, including free glycans, lipids, glycolipids, peptides, proteins, glycoproteins, stem cells and microRNA. Because milk is such a complex mixture, when analyzed without fractionation or purification, many components mask the analytical signal of others, so some components cannot be detected. Modern analytics allow for the discovery and characterization of hundreds of novel milk compounds with high-resolution and high-accuracy. Liquid chromatography paired with electrospray ionization allows the separation of peptides, glycans and glycolipids for improved mass spectrometric detection. Target proteins and glycoproteins can now be purified from intact milk or other dairy streams by chromatography in order to better characterize these proteins for new bioactivities. The combination of advanced analytics with the new engineering capabilities will allow for high molecular resolution and separation techniques that can be scaled-up to semi-industrial and industrial scale for translation of lab-based discoveries. Bioguided analysis and design of dairy processing side streams will result in the transformation of waste into isolated functional ingredients to add value to dietary products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...